on the bounds in poisson approximation for independent geometric distributed random variables

نویسندگان

t. l. hung

university of finance and marketing, 2/4 tran xuan soan, district 7‎, ‎ho chi minh city‎, ‎vietnam. l. t. ‎giang

university of finance and marketing, 2/4 tran xuan soan, district 7‎, ‎ho chi minh city‎, ‎vietnam.

چکیده

‎the main purpose of this note is to establish some bounds in poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎some results related to random sums of independent geometric distributed random variables are also investigated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

On bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables.

Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.

متن کامل

Poisson Approximation for Sums of Dependent Bernoulli Random Variables

In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.

متن کامل

Compound Poisson Approximation For Dissociated Random Variables Via Stein's Method

In the present paper we consider compound Poisson approximation by Stein’s method for dissociated random variables. We present some applications to problems in system reliability. In particular, our examples have the structure of an incomplete U-statistics. We mainly apply techniques from Barbour and Utev, who gave new bounds for the solutions of the Stein equation in compound Poisson approxima...

متن کامل

On the minimum of independent geometrically distributed random variables

The expectations E[X(1)], E[Z(1)], and E[Y(1)] of the minimum of n independent geometric, modified geometric, or exponential random variables with matching expectations differ. We show how this is accounted for by stochastic variability and how E[X(1)]/E[Y(1)] equals the expected number of ties at the minimum for the geometric random variables. We then introduce the “shifted geometric distribut...

متن کامل

Local Tail Bounds for Functions of Independent Random Variables

It is shown that functions defined on {0, 1, . . . , r − 1}n satisfying certain conditions of bounded differences that guarantee subgaussian tail behavior also satisfy a much stronger “local” subgaussian property. For self-bounding and configuration functions we derive analogous locally subexponential behavior. The key tool is Talagrand’s (1994) variance inequality for functions defined on the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۵، صفحات ۱۰۸۷-۱۰۹۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023